Fraud Detection in Python
Charlotte Werger
Data Scientist
# Import the packages from sklearn.preprocessing import MinMaxScaler from sklearn.cluster import KMeans
# Transform and scale your data X = np.array(df).astype(np.float)
scaler = MinMaxScaler() X_scaled = scaler.fit_transform(X)
# Define the k-means model and fit to the data kmeans = KMeans(n_clusters=6, random_state=42).fit(X_scaled)
Checking the number of clusters:
clust = range(1, 10) kmeans = [KMeans(n_clusters=i) for i in clust]
score = [kmeans[i].fit(X_scaled).score(X_scaled) for i in range(len(kmeans))]
plt.plot(clust,score) plt.xlabel('Number of Clusters') plt.ylabel('Score') plt.title('Elbow Curve') plt.show()
Fraud Detection in Python