Credit Risk Modeling in R
Lore Dirick
Manager of Data Science Curriculum at Flatiron School
PD
)EAD
)LGD
)$$
$$\text{EL}= \text{PD} \times \text{EAD} \times \text{LGD}$$
PD
)EAD
)LGD
)$$
$$\text{EL}= \text{PD} \times \text{EAD} \times \text{LGD}$$
head(loan_data, 10)
loan_status loan_amnt int_rate grade emp_length home_ownership annual_inc age
1 0 5000 10.65 B 10 RENT 24000 33
2 0 2400 NA C 25 RENT 12252 31
3 0 10000 13.49 C 13 RENT 49200 24
4 0 5000 NA A 3 RENT 36000 39
5 0 3000 NA E 9 RENT 48000 24
6 0 12000 12.69 B 11 OWN 75000 28
7 1 9000 13.49 C 0 RENT 30000 22
8 0 3000 9.91 B 3 RENT 15000 22
9 1 10000 10.65 B 3 RENT 100000 28
10 0 1000 16.29 D 0 RENT 28000 22
library(gmodels)
CrossTable(loan_data$home_ownership)
Cell Contents
|-------------------------|
| N |
| N / Table Total |
|-------------------------|
Total Observations in Table: 29092
| MORTGAGE | OTHER | OWN | RENT |
|-----------|-----------|-----------|-----------|
| 12002 | 97 | 2301 | 14692 |
| 0.413 | 0.003 | 0.079 | 0.505 |
|-----------|-----------|-----------|-----------|
CrossTable(loan_data$home_ownership, loan_data$loan_status, prop.r = TRUE,
prop.c = FALSE, prop.t = FALSE, prop.chisq = FALSE)
| loan_data$loan_status
loan_data$home_ownership | 0 | 1 | Row Total |
------------------------|-----------|-----------|-----------|
MORTGAGE | 10821 | 1181 | 12002 |
| 0.902 | 0.098 | 0.413 |
------------------------|-----------|-----------|-----------|
OTHER | 80 | 17 | 97 |
| 0.825 | 0.175 | 0.003 |
------------------------|-----------|-----------|-----------|
OWN | 2049 | 252 | 2301 |
| 0.890 | 0.110 | 0.079 |
------------------------|-----------|-----------|-----------|
RENT | 12915 | 1777 | 14692 |
| 0.879 | 0.121 | 0.505 |
------------------------|-----------|-----------|-----------|
Column Total | 25865 | 3227 | 29092 |
Credit Risk Modeling in R