Credit Risk Modeling in R
Lore Dirick
Manager of Data Science Curriculum at Flatiron School
rpart()
weights
: include case weightsrpart()
(rpart.control
)minsplit
: minimum number of observations for split attemptminbucket
: minimum number of observations in leaf nodepred_undersample_class = predict(ptree_undersample, newdata = test_set, type ="class")
1 2 3 ... 29073 29079 29084 29090 29091
0 0 0 ... 1 0 0 0 0
OR
pred_undersample = predict(ptree_undersample, newdata = test_set)
0 1
1 0.7382920 0.2617080
2 0.5665138 0.4334862
3 0.5992366 0.4007634
... ...
29084 0.7382920 0.2617080
29090 0.7382920 0.2617080
29091 0.7382920 0.2617080
table(test_set$loan_status, pred_undersample_class)
pred_undersample_class
0 1
0 8314 346
1 964 73
Credit Risk Modeling in R