The ROC-curve

Credit Risk Modeling in R

Lore Dirick

Manager of Data Science Curriculum at Flatiron School

Until now

  • Strategy table/curve : still make assumption
  • What is "overall" best model?
Credit Risk Modeling in R

Confusion matrix

$$

Actual loan status v. Model prediction

No default (0) Default (1)
No default (0) TN FP
Default (1) FN TP

$$

$\text{Accuracy} = \frac{TP +TN}{TP + FP + TN + FN}$

$\text{Sensitivity} = \frac{TP}{TP + FN}$

$\text{Specificity} = \frac{TN}{TN + FP}$

Credit Risk Modeling in R

Accuracy?

$$

Screen Shot 2020-06-22 at 6.21.14 PM.png

$$

$\text{Sensitivity} = \frac{TP}{TP + FN}$

$\text{Specificity} = \frac{TN}{TN + FP}$

Credit Risk Modeling in R

The ROC-curve

Screen Shot 2020-06-22 at 6.21.58 PM.png

$$

$\text{Sensitivity} = \frac{TP}{TP + FN}$

$\text{Specificity} = \frac{TN}{TN + FP}$

Credit Risk Modeling in R

The ROC-curve

Screen Shot 2020-06-22 at 6.22.11 PM.png

$$

$\text{Sensitivity} = \frac{TP}{TP + FN}$

$\text{Specificity} = \frac{TN}{TN + FP}$

Credit Risk Modeling in R

The ROC-curve

Screen Shot 2020-06-22 at 6.22.22 PM.png

$$

$\text{Sensitivity} = \frac{TP}{TP + FN}$

$\text{Specificity} = \frac{TN}{TN + FP}$

Credit Risk Modeling in R

The ROC-curve

Screen Shot 2020-06-22 at 6.22.35 PM.png

$$

$\text{Sensitivity} = \frac{TP}{TP + FN}$

$\text{Specificity} = \frac{TN}{TN + FP}$

Credit Risk Modeling in R

The ROC-curve

Screen Shot 2020-06-22 at 6.22.45 PM.png

$$

$\text{Sensitivity} = \frac{TP}{TP + FN}$

$\text{Specificity} = \frac{TN}{TN + FP}$

Credit Risk Modeling in R

The ROC-curve

Screen Shot 2020-06-22 at 6.22.54 PM.png

$$

$\text{Sensitivity} = \frac{TP}{TP + FN}$

$\text{Specificity} = \frac{TN}{TN + FP}$

Credit Risk Modeling in R

Which one is better?

Screen Shot 2020-06-22 at 6.23.06 PM.png

  • AUC ROC-curve A = 0.75
  • AUC ROC-curve B = 0.78
Credit Risk Modeling in R

Let's practice!

Credit Risk Modeling in R

Preparing Video For Download...