Credit Risk Modeling in R
Lore Dirick
Manager of Data Science Curriculum at Flatiron School
$$
| No default (0) | Default (1) | |
|---|---|---|
| No default (0) | TN | FP |
| Default (1) | FN | TP |
$$
$\text{Accuracy} = \frac{TP +TN}{TP + FP + TN + FN}$
$\text{Sensitivity} = \frac{TP}{TP + FN}$
$\text{Specificity} = \frac{TN}{TN + FP}$
$$

$$
$\text{Sensitivity} = \frac{TP}{TP + FN}$
$\text{Specificity} = \frac{TN}{TN + FP}$

$$
$\text{Sensitivity} = \frac{TP}{TP + FN}$
$\text{Specificity} = \frac{TN}{TN + FP}$

$$
$\text{Sensitivity} = \frac{TP}{TP + FN}$
$\text{Specificity} = \frac{TN}{TN + FP}$

$$
$\text{Sensitivity} = \frac{TP}{TP + FN}$
$\text{Specificity} = \frac{TN}{TN + FP}$

$$
$\text{Sensitivity} = \frac{TP}{TP + FN}$
$\text{Specificity} = \frac{TN}{TN + FP}$

$$
$\text{Sensitivity} = \frac{TP}{TP + FN}$
$\text{Specificity} = \frac{TN}{TN + FP}$

$$
$\text{Sensitivity} = \frac{TP}{TP + FN}$
$\text{Specificity} = \frac{TN}{TN + FP}$

A = 0.75B = 0.78Credit Risk Modeling in R