Credit Risk Modeling in R
Lore Dirick
Manager of Data Science Curriculum at Flatiron School
log_model_small <- glm(loan_status ~ age + home_ownership, family = "binomial", data = training_set)
log_model_small
Call: glm(formula = loan_status ~ age + home_ownership,
family = "binomial", data = training_set)
Coefficients:
(Intercept) age home_ownershipOTHER home_ownershipOWN home_ownershipRENT
-1.886396 -0.009308 0.129776 -0.019384 0.158581
Degrees of Freedom: 19393 Total (i.e. Null); 19389 Residual
Null Deviance: 13680
Residual Deviance: 13660 AIC: 13670
$$P({\text{loan status}}=1|\text{age}, \text{home ownership}) = \frac{1}{1+e^{-(\hat{\beta_0} + \hat{\beta_1} \text{age} + \hat{\beta_2} \text{OTHER} + \hat{\beta_3} \text{OWN} +\hat{\beta_4} \text{RENT} )}}$$
$P({\text{loan status}}=1|\text{age} = 33, \text{home ownership} = \text{RENT}) $
$= \dfrac{1}{1+e^{-(\hat{\beta_0} + \hat{\beta_1} 33 + \hat{\beta_2} 0 + \hat{\beta_3} 0 +\hat{\beta_4} 1 )}}$
$= \dfrac{1}{1+e^{(-(1.886396 + (-0.009308) \times 33 + (0.158581) \times 1))}}$
$= 0.115579$
test_case <- as.data.frame(test_set[1,])
test_case
loan_status loan_amnt grade home_ownership annual_inc age emp_cat ir_cat
1 0 5000 B RENT 24000 33 0-15 8-11
predict(log_model_small, newdata = test_case)
1
-2.03499
$${-\hat{\beta_0} + \hat{\beta_1} age + \hat{\beta_2} \text{OTHER} + \hat{\beta_3} \text{OWN} +\hat{\beta_4} \text{RENT} }$$
predict(log_model_small, newdata = test_case, type = "response")
1
0.1155779
Credit Risk Modeling in R