Machine Learning with caret in R
Zach Mayer
Data Scientist at DataRobot and co-author of caret
# Load the blood brain dataset
data(BloodBrain)
names(bbbDescr)[nearZeroVar(bbbDescr)]
[1] "negative" "peoe_vsa.2.1" "peoe_vsa.3.1"
[4] "a_acid" "vsa_acid" "frac.anion7."
[7] "alert"
# Basic model
set.seed(42)
data(BloodBrain)
model <- train(
bbbDescr,
logBBB,
method = "glm",
trControl = trainControl(
method = "cv", number = 10, verbose = TRUE
),
preProcess = c("zv", "center", "scale")
)
min(model$results$RMSE)
1.107702
# Remove low-variance predictors
set.seed(42)
data(BloodBrain)
model <- train(
bbbDescr,
logBBB,
method = "glm",
trControl = trainControl(
method = "cv", number = 10, verbose = TRUE
),
preProcess = c("nzv", "center", "scale")
)
min(model$results$RMSE)
0.9796199
# Add PCA
set.seed(42)
data(BloodBrain)
model <- train(
bbbDescr,
logBBB,
method = "glm",
trControl = trainControl(
method = "cv", number = 10, verbose = TRUE
),
preProcess = c("zv", "center", "scale", "pca")
)
min(model$results$RMSE)
0.9796199
Machine Learning with caret in R