Building RFM segments

Customer Segmentation in Python

Karolis Urbonas

Head of Data Science, Amazon

Data

  • Dataset we created previously
  • Will calculate quartile value for each column and name then R, F, M

rfm_data

Customer Segmentation in Python

Recency quartile

r_labels = range(4, 0, -1)

r_quartiles = pd.qcut(datamart['Recency'], 4, labels = r_labels)
datamart = datamart.assign(R = r_quartiles.values)

r-value

Customer Segmentation in Python

Frequency and monetary quartiles

f_labels = range(1,5)
m_labels = range(1,5)

f_quartiles = pd.qcut(datamart['Frequency'], 4, labels = f_labels) m_quartiles = pd.qcut(datamart['MonetaryValue'], 4, labels = m_labels)
datamart = datamart.assign(F = f_quartiles.values) datamart = datamart.assign(M = m_quartiles.values)

Customer Segmentation in Python

Build RFM segment and RFM score

  • Concatenate RFM quartile values to RFM_Segment
  • Sum RFM quartiles values to RFM_Score
def join_rfm(x): return str(x['R']) + str(x['F']) + str(x['M'])

datamart['RFM_Segment'] = datamart.apply(join_rfm, axis=1)
datamart['RFM_Score'] = datamart[['R','F','M']].sum(axis=1)
Customer Segmentation in Python

Final result

rfm_table

Customer Segmentation in Python

Let's practice building RFM segments

Customer Segmentation in Python

Preparing Video For Download...