Customer Segmentation in Python
Karolis Urbonas
Head of Data Science, Amazon
R
, F
, M
r_labels = range(4, 0, -1)
r_quartiles = pd.qcut(datamart['Recency'], 4, labels = r_labels)
datamart = datamart.assign(R = r_quartiles.values)
f_labels = range(1,5) m_labels = range(1,5)
f_quartiles = pd.qcut(datamart['Frequency'], 4, labels = f_labels) m_quartiles = pd.qcut(datamart['MonetaryValue'], 4, labels = m_labels)
datamart = datamart.assign(F = f_quartiles.values) datamart = datamart.assign(M = m_quartiles.values)
RFM_Segment
RFM_Score
def join_rfm(x): return str(x['R']) + str(x['F']) + str(x['M'])
datamart['RFM_Segment'] = datamart.apply(join_rfm, axis=1)
datamart['RFM_Score'] = datamart[['R','F','M']].sum(axis=1)
Customer Segmentation in Python