R For SAS Users
Melinda Higgins, PhD
Research Professor/Senior Biostatistician Emory University
# Summary statistics of weight, height, bmi of daviskeep
daviskeep %>%
select(weight, height, bmi) %>%
summary()
weight height bmi
Min. : 39.0 Min. :148.0 Min. :15.82
1st Qu.: 55.0 1st Qu.:164.0 1st Qu.:20.22
Median : 63.0 Median :170.0 Median :21.80
Mean : 65.3 Mean :170.6 Mean :22.26
3rd Qu.: 73.5 3rd Qu.:177.5 3rd Qu.:23.94
Max. :119.0 Max. :197.0 Max. :36.73
# Load Hmisc, run describe() for sex and bmi
library(Hmisc)
daviskeep %>%
select(sex, bmi) %>%
Hmisc::describe()
2 Variables 199 Observations
-----------------------------------------------------
sex
n missing distinct
199 0 2
Value F M
Frequency 111 88
Proportion 0.558 0.442
-----------------------------------------------------
bmi
n missing distinct Info Mean Gmd
199 0 176 1 22.26 3.303
.05 .10 .25 .50 .75 .90
18.05 18.84 20.22 21.80 23.94 26.30
.95
27.25
lowest : 15.82214 16.93703 17.09928 17.43285 17.50639
highest: 29.73704 29.80278 30.09496 30.15916 36.72840
# Load psych package, run psych:: describe() for weight, height, bmi
library(psych)
daviskeep %>%
select(weight, height, bmi) %>%
psych::describe()
Result
vars n mean sd median trimmed mad min max range skew kurtosis se
weight 1 199 65.30 13.34 63.0 64.12 11.86 39.00 119.00 80.00 0.91 0.84 0.95
height 2 199 170.59 8.95 170.0 170.40 10.38 148.00 197.00 49.00 0.21 -0.38 0.63
bmi 3 199 22.26 3.01 21.8 22.08 2.55 15.82 36.73 20.91 0.91 1.91 0.21
# For height, get n, median, 5th, 95th quartiles, min, max
daviskeep %>%
summarise(nht = n(),
medianht = median(height),
pt05 = quantile(height, probs = 0.05),
pt95 = quantile(height, probs = 0.95),
minht = min(height),
maxht = max(height))
Result
nht medianht pt05 pt95 minht maxht
1 199 170 157 185 148 197
# For weight, height and bmi, get mean, standard deviation
daviskeep %>%
select(weight, height, bmi) %>%
summarise(across(everything(), list(mean = ~ mean(.x),
sd = ~ sd(.x))))
Result
weight_mean weight_sd height_mean height_sd bmi_mean bmi_sd
1 65.29648 13.34346 170.5879 8.948848 22.25761 3.009239
# Get mean and sd for weight, height and bmi by sex group
daviskeep %>%
group_by(sex) %>%
select(sex, weight, height, bmi) %>%
summarise(across(everything(), list(mean = ~ mean(.x),
sd = ~ sd(.x))))
# A tibble: 2 × 7
sex weight_mean weight_sd height_mean height_sd bmi_mean bmi_sd
<fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 F 56.9 6.89 165. 5.68 21.0 2.18
2 M 75.9 11.9 178. 6.44 23.9 3.12
R For SAS Users