Metropolitan Segregation

Analyzing US Census Data in Python

Lee Hachadoorian

Asst. Professor of Instruction, Temple University

A map of the United States showing boundaries of metropolitan and micropolitan statistical areas.

Source: United States Census Bureau

Analyzing US Census Data in Python

Census API Request: Metro/Micropolitan Data

import requests

# Build base URL
HOST = "https://api.census.gov/data"
year = "2012"
dataset = "acs/acs5"
base_url = "/".join([HOST, year, dataset])

# Specify requested variables
# B01001_001E = Total population (estimate)
# B03002_003E = Nonhispanic White population (estimate)
# B03002_004E = Nonhispanic Black population (estimate)
get_vars = ["NAME", "B01001_001E", "B03002_003E", "B03002_004E"]
Analyzing US Census Data in Python

Census API Request: Metro/Micropolitan Data

# Specify requested variables
get_vars = ["NAME", "B01001_001E", "B03002_003E", "B03002_004E"]

# Create dictionary of predicates
predicates = {}
predicates["get"] = ",".join(get_vars)

# Requested geography predicates["for"] = \ "metropolitan statistical area/micropolitan statistical area:*"
Analyzing US Census Data in Python

Census API Request: Metro/Micropolitan Data

r = requests.get(base_url, params=predicates)

print(r.json()[:5])
[['NAME', 'B01001_001E', 'B03002_003E', 'B03002_004E', 'metropolitan statistical area/micropolitan statistical area'],
 ['Adjuntas, PR Micro Area', '19458', '140', '0', '10260'],
 ['Aguadilla-Isabela-San Sebastián, PR Metro Area', '305538', '5602', '231', '10380'],
 ['Coamo, PR Micro Area', '71596', '228', '53', '17620'],
 ['Fajardo, PR Metro Area', '70633', '543', '195', '21940']]
Analyzing US Census Data in Python

Census API Request: Metro/Micropolitan Data

# Create user-friendly column names
col_names = ["name", "pop", "white", "black", "msa"]

# Load JSON response into DataFrame
msa = pd.DataFrame(columns=col_names, data=r.json()[1:])

# Cast count columns to int data type
msa[["pop", "white", "black"]] = msa["pop", "white", "black"]].astype(int)
Analyzing US Census Data in Python

Metropolitan Area Definition

  state county   tract  white  black
0    01    001  020100   1601    217
1    01    001  020200    844   1214
2    01    001  020300   2538    647
3    01    001  020400   4030    191
4    01    001  020500   8438   1418
     msa      msa_name          county_name    state_name state county
0  10100  Aberdeen, SD         Brown County  South Dakota    46    013
1  10100  Aberdeen, SD       Edmunds County  South Dakota    46    045
2  10140  Aberdeen, WA  Grays Harbor County    Washington    53    027
3  10180   Abilene, TX      Callahan County         Texas    48    059
4  10180   Abilene, TX         Jones County         Texas    48    253
Analyzing US Census Data in Python

Pandas Merge Method

import pandas as pd
# Join DataFrames on matching columns
tracts_with_msa_id = pd.merge(...)
Analyzing US Census Data in Python

Pandas Merge Method

import pandas as pd
# Join DataFrames on matching columns
tracts_with_msa_id = pd.merge(tracts, msa_def, ...)
Analyzing US Census Data in Python

Pandas Merge Method

import pandas as pd
# Join DataFrames on matching columns
tracts_with_msa_id = pd.merge(tracts, msa_def, 
    left_on = ["state", "county"], right_on = ["state", "county"])
# Alternative when column names are the same
tracts_with_msa_id = pd.merge(tracts, msa_def, on = ["state", "county"])
Analyzing US Census Data in Python

Pandas Merge Method

# DataFrame with state names
st.head()
       state_name
state            
01        Alabama
02         Alaska
04        Arizona
05       Arkansas
06     California
Analyzing US Census Data in Python

Pandas Merge Method

# Join tracts and st DataFrames
tracts_st = pd.merge(tracts, st, left_on = "state", right_index = True)

tracts_st.head()
  state county   tract  white  black state_name
0    01    001  020100   1601    217    Alabama
1    01    001  020200    844   1214    Alabama
2    01    001  020300   2538    647    Alabama
3    01    001  020400   4030    191    Alabama
Analyzing US Census Data in Python

Let's Practice

Analyzing US Census Data in Python

Preparing Video For Download...