Dimensionality Reduction in Python
Jeroen Boeye
Head of Machine Learning, Faktion
sns.pairplot(ansur, hue="gender")
sns.pairplot(ansur, hue="gender")
weights_df.corr()
weights_df.corr()
weights_df.corr()
weights_df.corr()
cmap = sns.diverging_palette(h_neg=10,
h_pos=240,
as_cmap=True)
sns.heatmap(weights_df.corr(), center=0,
cmap=cmap, linewidths=1,
annot=True, fmt=".2f")
corr = weights_df.corr()
mask = np.triu(np.ones_like(corr, dtype=bool))
array([[ True, True, True],
[False, True, True],
[False, False, True]])
sns.heatmap(weights_df.corr(), mask=mask,
center=0, cmap=cmap, linewidths=1,
annot=True, fmt=".2f")
Dimensionality Reduction in Python