Designing Machine Learning Workflows in Python
Dr. Chris Anagnostopoulos
Honorary Associate Professor
grid_search = GridSearchCV(pipe, params, cv=3, return_train_score=True)
gs = grid_search.fit(X_train, y_train)
results = pd.DataFrame(gs.cv_results_)
results[['mean_train_score', 'std_train_score',
'mean_test_score', 'std_test_score']]
mean_train_score std_train_score mean_test_score std_test_score
0 0.829 0.006 0.735 0.009
1 0.829 0.006 0.725 0.009
2 0.961 0.008 0.716 0.019
3 0.981 0.005 0.749 0.024
...
mean_train_score std_train_score mean_test_score std_test_score
0 0.829 0.006 0.735 0.009
1 0.829 0.006 0.725 0.009
2 0.961 0.008 0.716 0.019
3 0.981 0.005 0.749 0.024
4 0.986 0.003 0.728 0.009
5 0.995 0.002 0.751 0.008
Observations:
Designing Machine Learning Workflows in Python