Linear regression

Case Study: Exploratory Data Analysis in R

Dave Robinson

Chief Data Scientist, DataCamp

Quantifying trends

3-1_v2.002.png

Case Study: Exploratory Data Analysis in R

Linear regression

3-1_v2.003.png

Case Study: Exploratory Data Analysis in R

Linear regression

3-1_v2.004.png

Case Study: Exploratory Data Analysis in R

Linear regression

3-1_v2.005.png

Case Study: Exploratory Data Analysis in R

Fitting model to Afghanistan

afghanistan <- by_year_country %>%
  filter(country == "Afghanistan")
afghanistan
# A tibble: 34 × 4
    year     country total percent_yes
   <dbl>       <chr> <int>       <dbl>
1   1947 Afghanistan    34   0.3823529
2   1949 Afghanistan    51   0.6078431
3   1951 Afghanistan    25   0.7600000
4   1953 Afghanistan    26   0.7692308
5   1955 Afghanistan    37   0.7297297
6   1957 Afghanistan    34   0.5294118
7   1959 Afghanistan    54   0.6111111
8   1961 Afghanistan    76   0.6052632
9   1963 Afghanistan    32   0.7812500
10  1965 Afghanistan    40   0.8500000
# ... with 24 more rows
Case Study: Exploratory Data Analysis in R

Fitting model to Afghanistan

model <- lm(percent_yes ~ year, data = afghanistan)

3-1_v2.012.png

Case Study: Exploratory Data Analysis in R

Fitting model to Afghanistan

3-1_v2.013.png

Case Study: Exploratory Data Analysis in R

Fitting model to Afghanistan

3-1_v2.015.png

Case Study: Exploratory Data Analysis in R

Fitting model to Afghanistan

summary(model)
Call:
lm(formula = percent_yes ~ year, data = afghanistan)
Residuals:
      Min        1Q    Median        3Q       Max 
-0.254667 -0.038650 -0.001945  0.057110  0.140596 
Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) -1.106e+01  1.471e+00  -7.523 1.44e-08 ***
year         6.009e-03  7.426e-04   8.092 3.06e-09 ***
<hr />
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.08497 on 32 degrees of freedom
Multiple R-squared:  0.6717,\tAdjusted R-squared:  0.6615 
F-statistic: 65.48 on 1 and 32 DF,  p-value: 3.065e-09
positive slope
3e-09 = .000000003
Case Study: Exploratory Data Analysis in R

Visualization can surprise you, but it doesn’t scale well.

3-1_v2.026.png

Case Study: Exploratory Data Analysis in R

Let's practice!

Case Study: Exploratory Data Analysis in R

Preparing Video For Download...