Tf-Idf Representation

Feature Engineering for Machine Learning in Python

Robert O'Callaghan

Director of Data Science, Ordergroove

Introducing TF-IDF

print(speech_df['Counts_the'].head())
0    21
1    13
2    29
3    22
4    20
Feature Engineering for Machine Learning in Python

TF-IDF

Feature Engineering for Machine Learning in Python

Importing the vectorizer

from sklearn.feature_extraction.text import TfidfVectorizer
tv = TfidfVectorizer()
print(tv)
TfidfVectorizer(analyzer=u'word', binary=False, decode_error=u'strict',
        dtype=<type 'numpy.float64'>, encoding=u'utf-8', input=u'content',
        lowercase=True, max_df=1.0, max_features=None, min_df=1,
        ngram_range=(1, 1), norm=u'l2', preprocessor=None, smooth_idf=True,
        stop_words=None, strip_accents=None, sublinear_tf=False,
        token_pattern=u'(?u)\\b\\w\\w+\\b', tokenizer=None, use_idf=True,
        vocabulary=None)
Feature Engineering for Machine Learning in Python

Max features and stopwords

tv = TfidfVectorizer(max_features=100, 
                     stop_words='english')

max_features: Maximum number of columns created from TF-IDF

stop_words: List of common words to omit e.g. "and", "the" etc.

Feature Engineering for Machine Learning in Python

Fitting your text

tv.fit(train_speech_df['text'])
train_tv_transformed = tv.transform(train_speech_df['text'])
Feature Engineering for Machine Learning in Python

Putting it all together

train_tv_df = pd.DataFrame(train_tv_transformed.toarray(),
                           columns=tv.get_feature_names())\
                                 .add_prefix('TFIDF_')

train_speech_df = pd.concat([train_speech_df, train_tv_df], 
                            axis=1, sort=False)
Feature Engineering for Machine Learning in Python

Inspecting your transforms

examine_row = train_tv_df.iloc[0]
print(examine_row.sort_values(ascending=False))
TFIDF_government    0.367430
TFIDF_public        0.333237
TFIDF_present       0.315182
TFIDF_duty          0.238637
TFIDF_citizens      0.229644
Name: 0, dtype: float64
Feature Engineering for Machine Learning in Python

Applying the vectorizer to new data

test_tv_transformed = tv.transform(test_df['text_clean'])

test_tv_df = pd.DataFrame(test_tv_transformed.toarray(),
                          columns=tv.get_feature_names())\
                            .add_prefix('TFIDF_')

test_speech_df = pd.concat([test_speech_df, test_tv_df], 
                           axis=1, sort=False)
Feature Engineering for Machine Learning in Python

Let's practice!

Feature Engineering for Machine Learning in Python

Preparing Video For Download...