Locate rows: .iloc[] and .loc[]

Writing Efficient Code with pandas

Leonidas Souliotis

PhD Candidate

The poker dataset

S1 R1 S2 R2 S3 R3 S4 R4 S5 R5
1 10 Jack King 4 Ace
2 Jack King 10 Queen Ace
3 Queen Jack King 10 Ace
S1 R1 S2 R2 S3 R3 S4 R4 S5 R5
1 2 10 3 11 3 13 4 4 1 1
2 2 11 2 13 2 10 2 12 2 1
3 3 12 3 11 3 13 3 10 3 1

Sn: symbol of the n-th card

1 (Hearts), 2 (Diamonds), 3 (Clubs), 4 (Spades)

Rn: rank of the n-th card

1 (Ace), 2-10, 11 (Jack), 12 (Queen), 13 (King)

Writing Efficient Code with pandas

Locate targeted rows

.loc[] — index name locator

# Specify the range of rows to select 
rows = range(0, 500)
# Time selecting rows using .loc[]
loc_start_time = time.time()
data.loc[rows]    
loc_end_time = time.time()

print("Time using .loc[] : {} sec".format(
            loc_end_time - loc_start_time))
Time using .loc[]: 0.001951932 seconds

.iloc[] — index number locator

# Specify the range of rows to select 
rows = range(0, 500)
# Time selecting rows using .iloc[]
iloc_start_time = time.time()
data.iloc[rows]    
iloc_end_time = time.time()

print("Time using .iloc[]: {} sec".format(
            iloc_end_time - iloc_start_time)
Time using .iloc[] : 0.0007140636 sec
Difference in speed: 173.355592654%
Writing Efficient Code with pandas

Locate targeted columns

.iloc[] — index number locator

iloc_start_time = time.time()
data.iloc[:,:3]
iloc_end_time = time.time()
print("Time using .iloc[]: {} sec".format(
            iloc_end_time - iloc_start_time))
Time using .iloc[]: 0.00125193595886 sec

Locating columns by names

names_start_time = time.time()
data[['S1', 'R1', 'S2']]
names_end_time = time.time()
print("Time using selection by name: {} sec".format(
            names_end_time - names_start_time))
Time using selection by name: 0.000964879989624 sec
Difference in speed: 29.7504324188%
Writing Efficient Code with pandas

Let's do it!

Writing Efficient Code with pandas

Preparing Video For Download...