More useful summary tools

Python for Spreadsheet Users

Chris Cardillo

Data Scientist

.mean()

fruit_sales.groupby('store', as_index=False).mean()

Fruit Store Sales on Average.png

Python for Spreadsheet Users

Steps to an answer

  1. Fruit store transactions
  2. Total sales by fruit for each store
  3. Sorted sales by fruit for each store
  4. Top row for each store
Python for Spreadsheet Users

1: Fruit store transactions

many fruit sales.png

Python for Spreadsheet Users

2: Total sales by fruit for each store

totals = fruit_sales.groupby(['store', 'product_name'], as_index=False).sum()

grouped and summarized.png

Python for Spreadsheet Users

3: Sorted sales by fruit for each store

totals = (totals.sort_values('revenue', ascending=False)
.reset_index(drop=True))

totals sorted.png

Python for Spreadsheet Users

4: Top row for each store

top_store_sellers = totals.groupby('store').head(1).reset_index(drop=True)

Top gross groceries.png

Python for Spreadsheet Users

Steps to an answer

# Raw data
fruit_sales

# Summary - by fruit by store
totals = fruit_sales.groupby(['store', 'product_name'], as_index=False).sum()

# Sort the Summary
totals = (totals.sort_values('revenue', ascending=False)
.reset_index(drop=True))

# First row for each store
top_store_sellers = totals.groupby('store').head(1).reset_index(drop=True)

Top gross groceries.png

Python for Spreadsheet Users

Steps to an answer

1: Raw Transaction Data

many fruit sales.png

2: By Fruit/Store Summary

grouped and summarized.png

Python for Spreadsheet Users

Steps to an answer

2: By Fruit/Store Summary

grouped and summarized.png

3: By Fruit/Store Sorted

totals sorted.png

Python for Spreadsheet Users

Steps to an answer

3: By Fruit/Store Sorted

totals sorted.png

4: First Row Per Store

Top gross groceries.png

Python for Spreadsheet Users

Your turn!

Python for Spreadsheet Users

Preparing Video For Download...