Improving Your Data Visualizations in Python
Nick Strayer
Instructor
pollution.head()
city year month day CO NO2 O3 SO2
0 Cincinnati 2012 1 1 0.245 20.0 0.030 4.20
1 Cincinnati 2012 1 2 0.185 9.0 0.025 6.35
2 Cincinnati 2012 1 3 0.335 31.0 0.025 4.25
3 Cincinnati 2012 1 4 0.305 25.0 0.016 17.15
4 Cincinnati 2012 1 5 0.345 21.0 0.016 11.05
pollution.city.unique()
[ 'Boston', 'Cincinnati', 'Denver', 'Des Moines',
'Fairbanks', 'Houston', 'Indianapolis', 'Long Beach',
'New York', 'Salt Lake City', 'Vandenberg Air Force Base' ]
cinci_pollution = pollution[pollution.city == 'Cincinnati']
# Make an array of colors based upon if a row is a given day cinci_colors = ['orangered' if day == 38 else 'steelblue' for day in cinci_pollution.day]
# Plot with additional scatter plot argument facecolors p = sns.regplot(x='NO2', y='SO2', data = cinci_pollution, fit_reg=False, scatter_kws={'facecolors': cinci_colors,'alpha': 0.7})
Improving Your Data Visualizations in Python