Analyzing Marketing Campaigns with pandas
Jill Rosok
Data Scientist
import matplotlib.pyplot as plt # Create a bar chart using channel retention DataFrame language_conversion_rate.plot(kind = 'bar')
# Add a title and x and y-axis labels plt.title('Conversion rate by language\n', size = 16) plt.xlabel('Language', size = 14) plt.ylabel('Conversion rate (%)', size = 14)
# Display the plot plt.show()
# Group by date_subscribed and count unique users
subscribed = marketing.groupby(['date_subscribed'])['user_id']\
.nunique()
# Group by date_subscribed and sum conversions
retained = marketing[marketing['is_retained'] == True]\
.groupby(['date_subscribed'])\
['user_id'].nunique()
# Calculate subscriber quality across dates
daily_retention_rate = retained/subscribed
# Reset index to turn the Series into a DataFrame
daily_retention_rate =
pd.DataFrame(daily_retention_rate.reset_index())
# Rename columns
daily_retention_rate.columns = ['date_subscribed',
'retention_rate']
# Create a line chart using the daily_retention DataFrame
daily_retention_rate.plot('date_subscribed',
'retention_rate')
# Add a title and x and y-axis labels
plt.title('Daily subscriber quality\n', size = 16)
plt.ylabel('1-month retention rate (%)', size = 14)
plt.xlabel('Date', size = 14)
# Set the y-axis to begin at 0
plt.ylim(0)
# Display the plot
plt.show()
Analyzing Marketing Campaigns with pandas