A/B testing & segmentation

Analyzing Marketing Campaigns with pandas

Jill Rosok

Data Scientist

Don't forget about segmentation!

shutterstock_379530769.jpg

Analyzing Marketing Campaigns with pandas

Personalization test segmented by language

for language in np.unique(marketing['language_displayed'].values):
    print(language)


Analyzing Marketing Campaigns with pandas

Isolate the relevant data

for language in np.unique(marketing['language_displayed'].values):
    print(language)

    language_data = marketing[(marketing['marketing_channel'] == 'Email') & 
                              (marketing['language_displayed'] == language)]                              
Analyzing Marketing Campaigns with pandas

Isolate subscribers

for language in np.unique(marketing['language_displayed'].values):
    print(language)

    language_data = marketing[(marketing['marketing_channel'] == 'Email') & 
                              (marketing['language_displayed'] == language)]

    subscribers = language_data.groupby(['user_id', 'variant'])['converted']\
                                                                      .max()
Analyzing Marketing Campaigns with pandas

Isolate control and personalization

for language in np.unique(marketing['language_displayed'].values):
    print(language)

    language_data = marketing[(marketing['marketing_channel'] == 'Email') & 
                              (marketing['language_displayed'] == language)]

    subscribers = language_data.groupby(['user_id', 'variant'])['converted']\
                                                                      .max()
    subscribers = pd.DataFrame(subscribers.unstack(level=1)) 
    control = subscribers['control'].dropna()
    personalization = subscribers['personalization'].dropna()  
Analyzing Marketing Campaigns with pandas

Full for loop

for language in np.unique(marketing['language_displayed'].values):
    print(language)

    language_data = marketing[(marketing['marketing_channel'] == 'Email') & 
                              (marketing['language_displayed'] == language)]

    subscribers = language_data.groupby(['user_id', 'variant'])['converted']\
                                                                      .max()
    subscribers = pd.DataFrame(subscribers.unstack(level=1)) 
    control = subscribers['control'].dropna()
    personalization = subscribers['personalization'].dropna()  

    print('lift:', lift(control, personalization))
    print('t-statistic:', stats.ttest_ind(control, personalization), '\n\n')
Analyzing Marketing Campaigns with pandas

Results

Arabic
lift: 50.0%
t-statistic: Ttest_indResult(statistic=-0.58, pvalue=0.58) 

English
lift: 39.0%
t-statistic: Ttest_indResult(statistic=-2.22, pvalue=0.03) 

German
lift: -1.62%
t-statistic: Ttest_indResult(statistic=0.19, pvalue=0.85) 

Spanish
lift: 166.67%
t-statistic: Ttest_indResult(statistic=-2.36, pvalue=0.04) 
Analyzing Marketing Campaigns with pandas

Let's practice!

Analyzing Marketing Campaigns with pandas

Preparing Video For Download...