Customer segmentation

Analyzing Marketing Campaigns with pandas

Jill Rosok

Data Scientist

Common ways to segment audiences

segmentation

  • Age
  • Gender
  • Location
  • Past interaction(s) with the business
  • Marketing channels users interacted with
Analyzing Marketing Campaigns with pandas

Segmenting using pandas

# Subset to include only House Ads
house_ads = marketing\
         [marketing['subscribing_channel'] == 'House Ads']

retained = house_ads[house_ads['is_retained'] == True]\ ['user_id'].nunique() subscribers = house_ads[house_ads['converted'] == True]\ ['user_id'].nunique() retention_rate = retained/subscribers print(round(retention_rate*100,2), '%')
58.05 %
Analyzing Marketing Campaigns with pandas

There must be an easier way to segment!

shutterstock_705276157.jpg

Analyzing Marketing Campaigns with pandas

Segmenting using pandas - groupby()

# Group by subscribing_channel and calculate retention
retained = marketing[marketing['is_retained'] == True]\
          .groupby(['subscribing_channel'])\
          ['user_id'].nunique()
print(retained)          
subscribing_channel
Email        109
Facebook     152
House Ads    173
Instagram    158
Push          54
Name: user_id, dtype: int64
Analyzing Marketing Campaigns with pandas

Segmenting using pandas - groupby()

# Group by subscribing_channel and calculate subscribers
subscribers = marketing[marketing['converted'] == True]\
            .groupby(['subscribing_channel'])\
            ['user_id'].nunique()
print(subscribers)            
subscribing_channel
Email        125
Facebook     221
House Ads    298
Instagram    232
Push          77
Name: user_id, dtype: int64
Analyzing Marketing Campaigns with pandas

Segmenting results

# Calculate the retention rate across the DataFrame
channel_retention_rate = (retained/subscribers)*100
print(channel_retention_rate)
subscribing_channel
Email        87.200000
Facebook     68.778281
House Ads    58.053691
Instagram    68.103448
Push         70.129870
Name: user_id, dtype: float64
Analyzing Marketing Campaigns with pandas

Let's practice!

Analyzing Marketing Campaigns with pandas

Preparing Video For Download...