Financial Analytics in Google Sheets
David Ardia
Professor in Quantitative Methods for Finance
Most popular risk-adjusted metric
Excess reward divided by volatility:
$$Sharpe\,\,ratio = \frac{m_G - r_f}{sd}$$
Effective rate of return: $m_G$
Risk-free rate: $r_f$
Volatility of the returns: $sd$
Most popular risk-adjusted metric
Excess reward divided by volatility:
$$Sharpe\,\,ratio = \frac{m_G - r_f}{sd}$$
Effective rate of return: $m_G$
Risk-free rate: $r_f$ → Interest rate of the US Treasury Bill
Volatility of the returns: $sd$
$R_1=50\%,R_2=-20\%,R_3=5\%,R_4=-3\%$
$$Sharpe\,\,ratio = \frac{m_G - r_f}{sd} = \frac{5\% - 1\%}{30\%} = 0.13$$
$$smd=\sqrt{\frac{(R_1^\star-m_A)^2+(R_2^\star-m_A)^2+\cdots+(R_L^\star-m_A)^2}{L}}$$
where $R_1^\star, R_2^\star,\ldots,R_L^\star$ are the $L$ historical returns which are below $m_A$
$$Sortino\,\,ratio = \frac{m_G - r_f}{ smd}$$
$R_1=50\%,R_2=-20\%,R_3=5\%,R_4=-3\%$
Average return: $m_A=8\%$
Semideviation:
$$smd=\sqrt{\frac{(-20\%-8\%)^2+(5\%-8\%)^2+(-3\%-8\%)^2}{3}}=17\%$$
$R_1=50\%,R_2=-20\%,R_3=5\%,R_4=-3\%$
$$Sortino\,\,ratio = \frac{m_G - r_f}{smd} = \frac{5\% - 1\%}{17\%} = 0.23 $$
Financial Analytics in Google Sheets