Machine Learning with PySpark
Andrew Collier
Data Scientist, Fathom Data
cars.select('mass', 'cyl', 'consumption').show(5)
+------+---+-----------+
| mass|cyl|consumption|
+------+---+-----------+
|1451.0| 6| 9.05|
|1129.0| 4| 6.53|
|1399.0| 4| 7.84|
|1147.0| 4| 7.84|
|1111.0| 4| 9.05|
+------+---+-----------+
Linear regression with an intercept. Fit to training data.
regression = LinearRegression(labelCol='consumption', fitIntercept=True)
regression = regression.fit(cars_train)
Calculate the RMSE on the testing data.
evaluator.evaluate(regression.transform(cars_test))
# RMSE for model with an intercept
0.745974203928479
Linear regression without an intercept. Fit to training data.
regression = LinearRegression(labelCol='consumption', fitIntercept=False)
regression = regression.fit(cars_train)
Calculate the RMSE on the testing data.
# RMSE for model without an intercept (second model)
0.852819012439
# RMSE for model with an intercept (first model)
0.745974203928
from pyspark.ml.tuning import ParamGridBuilder # Create a parameter grid builder params = ParamGridBuilder()
# Add grid points params = params.addGrid(regression.fitIntercept, [True, False])
# Construct the grid params = params.build()
# How many models? print('Number of models to be tested: ', len(params))
Number of models to be tested: 2
Create a cross-validator and fit to the training data.
cv = CrossValidator(estimator=regression,
estimatorParamMaps=params,
evaluator=evaluator)
cv = cv.setNumFolds(10).setSeed(13).fit(cars_train)
What's the cross-validated RMSE for each model?
cv.avgMetrics
[0.800663722151, 0.907977823182]
# Access the best model
cv.bestModel
Or just use the cross-validator object.
predictions = cv.transform(cars_test)
Retrieve the best parameter.
cv.bestModel.explainParam('fitIntercept')
'fitIntercept: whether to fit an intercept term (default: True, current: True)'
params = ParamGridBuilder() \ .addGrid(regression.fitIntercept, [True, False]) \
.addGrid(regression.regParam, [0.001, 0.01, 0.1, 1, 10]) \
.addGrid(regression.elasticNetParam, [0, 0.25, 0.5, 0.75, 1]) \ .build()
How many models now?
print ('Number of models to be tested: ', len(params))
Number of models to be tested: 50
Machine Learning with PySpark