Model Validation in Python
Kasey Jones
Data Scientist
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import RandomForestClassifier
rfr = RandomForestRegressor(random_state=1111)
rfc = RandomForestClassifier(random_state=1111)
n_estimators
: the number of trees in the forest
max_depth
: the maximum depth of the trees
random_state
: random seed
from sklearn.ensemble import RandomForestRegressor
rfr = RandomForestRegressor(n_estimators=50, max_depth=10)
rfr = RandomForestRegressor(random_state=1111)
rfr.n_estimators = 50
rfr.max_depth = 10
Print how important each column is to the model
for i, item in enumerate(rfr.feature_importances_):
print("{0:s}: {1:.2f}".format(X.columns[i], item))
weight: 0.50
height: 0.39
left_handed: 0.72
union_preference: 0.05
eye_color: 0.03
Model Validation in Python