Hyperparameter Tuning in Python
Alex Scriven
Data Scientist
Hyperparameters:
Create a simple random forest estimator and print it out:
rf_clf = RandomForestClassifier() print(rf_clf)
RandomForestClassifier(n_estimators='warn', criterion='gini', max_depth=None, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_jobs=None, oob_score=False, random_state=None, verbose=0,bootstrap=True, class_weight=None, warm_start=False)
More info: http://scikit-learn.org
Take the n_estimators
parameter.
Data Type & Default Value:
n_estimators : integer, optional (default=10)
Definition:
The number of trees in the forest.
Set some hyperparameters at estimator creation:
rf_clf = RandomForestClassifier(n_estimators=100, criterion='entropy')
print(rf_clf)
RandomForestClassifier(n_estimators=100, criterion='entropy',
max_depth=None, max_features='auto', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_jobs=None,
oob_score=False, random_state=None, verbose=0,bootstrap=True,
class_weight=None, warm_start=False)
Find the hyperparameters of a Logistic Regression:
log_reg_clf = LogisticRegression()
print(log_reg_clf) LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, max_iter=100, multi_class='warn', n_jobs=None, penalty='l2', random_state=None, solver='warn', tol=0.0001, verbose=0, warm_start=False)
There are less hyperparameters to tune with this algorithm!
Some hyperparameters are more important than others.
Some will not help model performance:
For the random forest classifier:
n_jobs
random_state
verbose
Not all hyperparameters make sense to 'train'
Some important hyperparameters:
n_estimators
(high value)max_features
(try different values)max_depth
& min_sample_leaf
(important for overfitting)criterion
Remember: this is only a guide
Some resources for learning this:
Hyperparameter Tuning in Python