Ensemble Methods in Python
Román de las Heras
Data Scientist, Appodeal
Heterogeneous Ensemble Function
het_est = HeterogeneousEnsemble(
estimators=[('est1', est1), ('est2', est2), ...],
# additional parameters
)
Homogeneous Ensemble Function
hom_est = HomogeneousEnsemble(
est_base,
n_estimators=chosen_number,
# additional parameters
)
Bagging Classifier example:
# Instantiate the base estimator ("weak" model)
clf_dt = DecisionTreeClassifier(max_depth=3)
# Build the Bagging classifier with 5 estimators
clf_bag = BaggingClassifier(
clf_dt,
n_estimators=5
)
# Fit the Bagging model to the training set
clf_bag.fit(X_train, y_train)
# Make predictions on the test set
y_pred = clf_bag.predict(X_test)
Bagging Regressor example:
# Instantiate the base estimator ("weak" model)
reg_lr = LinearRegression()
# Build the Bagging regressor with 10 estimators
reg_bag = BaggingRegressor(
reg_lr
)
# Fit the Bagging model to the training set
reg_bag.fit(X_train, y_train)
# Make predictions on the test set
y_pred = reg_bag.predict(X_test)
clf_bag = BaggingClassifier(
clf_dt,
oob_score=True
)
clf_bag.fit(X_train, y_train)
print(clf_bag.oob_score_)
0.9328125
pred = clf_bag.predict(X_test)
print(accuracy_score(y_test, pred))
0.9625
Ensemble Methods in Python