Generalized Linear Models in Python
Ita Cirovic Donev
Data Science Consultant
# mean of y
y_mean = crab['sat'].mean()
2.919
# variance of y
y_variance = crab['sat'].var()
9.912
Consequences:
ratio = crab_fit.pearson_chi2 / crab_fit.df_resid
print(ratio)
3.134
Ratio $ =1$ $\rightarrow$ approximately Poisson
Ratio $ <1$ $\rightarrow$ underdispersion
Ratio $ >1$ $\rightarrow$ overdispersion
import statsmodels.api as sm
from statsmodels.formula.api import glm
model = glm('y ~ x', data = my_data,
family = sm.families.NegativeBinomial(alpha = 1)).fit()
Generalized Linear Models in Python