Statistical Thinking in Python (Part 1)
Justin Bois
Teaching Professor at the California Institute of Technology
_ = plt.plot(total_votes/1000, dem_share,
marker='.', linestyle='none')
_ = plt.xlabel('total votes (thousands)')
_ = plt.ylabel('percent of vote for Obama')
$$covariance = \frac{1}{n}\sum_{i=1}^{n}(x_i - \bar{x})(y_i - \bar{y})$$
$$\rho = \text{Pearson correlation} = \frac{\text{covariance}}{(\text{std of x}) (\text{std of y})}$$
$$= \frac{\text{variability due to codependence}}{\text{independant variability}}$$
Statistical Thinking in Python (Part 1)