Analyzing IoT Data in Python
Matthias Voppichler
IT Developer
from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression from sklearn.pipeline import Pipeline
# Initialize Objects sc = StandardScaler() logreg = LogisticRegression()
# Create pipeline pl = Pipeline([ ("scale", sc), ("logreg", logreg) ])
pl
Pipeline(memory=None,
steps=[('scale', StandardScaler(copy=True, with_mean=True, with_std=True)),
('logreg', <class 'sklearn.linear_model.logistic.LogisticRegression'>)])
pl.fit(X_train, y_train)
print(pl.predict(X_test))
[0 0 1 1 0 1 1 0 0]
import pickle
with Path("pipeline_model.pkl").open("bw") as f: pickle.dump(pl, f)
import pickle
with Path("pipeline_model.pkl").open('br') as f:
pl = pickle.load(f)
pl
Pipeline(memory=None,
steps=[('scale', StandardScaler(copy=True, with_mean=True, with_std=True)),
('logreg', LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
intercept_scaling=1, max_iter=100, multi_class='warn', n_jobs=None, penalty='l2',
random_state=None, solver='warn', tol=0.0001, verbose=0, warm_start=False))])
DO NOT unpickle untrusted files, this can lead to malicious code being executed.
Analyzing IoT Data in Python