Analyzing IoT Data in Python
Matthias Voppichler
IT Developer
logreg = LogisticRegression() logreg.fit(X_train, y_train)
print(logreg.score(X_test, y_test))
0.78145113
StandardScaler
print(data.head())
humidity temperature pressure
timestamp
2018-10-01 00:00:00 81.0 11.8 1013.4
2018-10-01 00:15:00 79.7 11.9 1013.1
2018-10-01 00:30:00 81.0 12.1 1013.0
2018-10-01 00:45:00 79.7 11.7 1012.7
2018-10-01 01:00:00 84.3 11.2 1012.6
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
sc.fit(data)
print(sc.mean_) print(sc.var_)
[ 71.8826716 14.17002019 1018.17042396]
[372.78261022 20.37926608 53.67519188]
data_scaled = sc.transform(data)
df_scaled = pd.DataFrame(data_scaled,
columns=data.columns,
index=data.index)
print(data_scaled.head())
humidity temperature pressure
timestamp
2018-10-01 00:00:00 0.472215 -0.524998 -0.651134
2018-10-01 00:15:00 0.404884 -0.502847 -0.692082
2018-10-01 00:30:00 0.472215 -0.458543 -0.705731
2018-10-01 00:45:00 0.404884 -0.547150 -0.746679
2018-10-01 01:00:00 0.643132 -0.657908 -0.760329
logreg = LogisticRegression()
logreg.fit(X_train_scaled, y_train_scaled)
print(logreg.score(X_test_scaled, y_test_scaled))
0.88145113
Analyzing IoT Data in Python