Analyzing IoT Data in Python
Matthias Voppichler
IT Developer
# Create Pipeline pl = Pipeline([ ("scale", StandardScaler()), ("logreg", LogisticRegression()) ])
# Fit the pipeline pl.fit(X_train, y_train) print(pl.score(X_test, y_test))
0.8897932222860425
predictions = pl.predict(X_test)
print(predictions) print(f"Test length: {len(X_test)}") print(f"Prediction length: {len(predictions)}")
[0 0 0 ... 1 1 1]
Test length: 500
Prediction length: 500
print(single_record)
{'timestamp': '2018-11-30 18:15:00',
'humidity': 81.7,
'pressure': 1019.8,
'temperature': 1.5},
cols = X_train.columns
df = pd.DataFrame.from_records([single_record],
index="timestamp",
columns=cols)
def on_message(client, userdata, message): data = json.loads(message.payload)
df = pd.DataFrame.from_records([data], index="timestamp", columns=cols)
category = pl.predict(df) maybe_alert(category[0])
subscribe.callback(on_message, topic, hostname=MQTT_HOST)
Analyzing IoT Data in Python