Analyzing IoT Data in Python
Matthias Voppichler
IT Developer
series[t] = trend[t] + seasonal[t] + residual[t]
20.2 = 14.9 + 4.39 + 0.91
import statsmodels.api as sm # Run seasonal decompose decomp = sm.tsa.seasonal_decompose(data["temperature"]) print(decomp.seasonal.head())
decomp.plot()
timestamp
2018-10-01 00:00:00 -3.670394
2018-10-01 01:00:00 -3.987451
2018-10-01 02:00:00 -4.372217
2018-10-01 03:00:00 -4.534066
2018-10-01 04:00:00 -4.802165
Freq: H, Name: temperature, dtype: float64
# Plot the timeseries plt.plot(data["temperature"], label="temperature")
decomp = sm.tsa.seasonal_decompose(data["temperature"]) # Plot trend and seasonality plt.plot(decomp.trend, label="trend") plt.plot(decomp.seasonal, label="seasonal") plt.show()
Analyzing IoT Data in Python