Analyzing IoT Data in Python
Matthias Voppichler
IT Developer
print(environment_labeled.head())
humidity temperature pressure label
timestamp
2018-10-01 00:00:00 81.0 11.8 1013.4 1
2018-10-01 00:15:00 79.7 11.9 1013.1 1
2018-10-01 00:30:00 81.0 12.1 1013.0 1
2018-10-01 00:45:00 79.7 11.7 1012.7 1
2018-10-01 01:00:00 84.3 11.2 1012.6 1
Splitting time series data
split_day = "2018-10-13"
train = environment[:split_day] test = environment[split_day:]
print(train.iloc[0].name) print(train.iloc[-1].name) print(test.iloc[0].name) print(test.iloc[-1].name)
2018-10-01 00:00:00
2018-10-13 23:45:00
2018-10-14 00:00:00
2018-10-15 23:45:00
X_train = train.drop("target", axis=1) y_train = train["target"] X_test = test.drop("target", axis=1) y_test = test["target"]
print(X_train.shape) print(y_train.shape)
(1248, 3)
(1248,)
from sklearn.linear_model import LogisticRegression
logreg = LogisticRegression()
logreg.fit(X_train, y_train)
print(logreg.predict(X_test))
[0 0 1 1 1 1 1 0 0]
Analyzing IoT Data in Python