Practicing Statistics Interview Questions in Python
Conor Dewey
Data Scientist, Squarespace
from sklearn.linear_model import LinearRegression
lm = LinearRegression()
lm.fit(X_train, y_train)
LinearRegression(copy_X=True, fit_intercept=True,
n_jobs=None, normalize=False)
coef = lm.coef_
print(coef)
[0.79086669]
from sklearn.linear_model import LogisticRegression
clf = LogisticRegression(solver='lbfgs')
clf.fit(X_train, y_train)
LogisticRegression(C=1.0, class_weight=None,
dual=False, fit_intercept=True,
intercept_scaling=1,
max_iter=100, multi_class='warn',
n_jobs=None, penalty='l2',
random_state=None, solver='lbfgs',
tol=0.0001, verbose=0,
warm_start=False)
coefs = clf.coef_
print(coefs)
[[0.4015177 3.85056451]]
accuracy = clf.score(X_test, y_test)
print(accuracy)
0.8583333333333333
Practicing Statistics Interview Questions in Python