Introduction to Deep Learning with Keras
Miguel Esteban
Data Scientist & Founder
# Fitting an already built and compiled model
model.fit(X_train, y_train, epochs=100, batch_size=128)
^^^^^^^^^^^^^^
# Import BatchNormalization from keras layers from tensorflow.keras.layers import BatchNormalization
# Instantiate a Sequential model model = Sequential()
# Add an input layer model.add(Dense(3, input_shape=(2,), activation = 'relu'))
# Add batch normalization for the outputs of the layer above model.add(BatchNormalization())
# Add an output layer model.add(Dense(1, activation='sigmoid'))
Introduction to Deep Learning with Keras