Introduction to Deep Learning with Keras
Miguel Esteban
Data Scientist & Founder



import seaborn as sns
# Plot a pairplot
sns.pairplot(circles, hue="target")







from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense# Instantiate a sequential model model = Sequential()

from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense# Instantiate a sequential model model = Sequential()# Add input and hidden layer model.add(Dense(4, input_shape=(2,), activation='tanh'))

from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense# Instantiate a sequential model model = Sequential()# Add input and hidden layer model.add(Dense(4, input_shape=(2,), activation='tanh'))# Add output layer, use sigmoid model.add(Dense(1, activation='sigmoid'))

# Compile model model.compile(optimizer='sgd', loss='binary_crossentropy')# Train model model.train(coordinates, labels, epochs=20)# Predict with trained model preds = model.predict(coordinates)

Introduction to Deep Learning with Keras