Streamlined Data Ingestion with pandas
Amany Mahfouz
Instructor
read_json()
dtype
keyword argumentorient
keyword argument to flag uncommon JSON data layoutspandas
documentationpandas
guesses how to arrange it in a tablepandas
can automatically handle common orientations[
{
"age_adjusted_death_rate": "7.6",
"death_rate": "6.2",
"deaths": "32",
"leading_cause": "Accidents Except Drug Posioning (V01-X39, X43, X45-X59, Y85-Y86)",
"race_ethnicity": "Asian and Pacific Islander",
"sex": "F",
"year": "2007"
},
{
"age_adjusted_death_rate": "8.1",
"death_rate": "8.3",
"deaths": "87",
...
{
"age_adjusted_death_rate": {
"0": "7.6",
"1": "8.1",
"2": "7.1",
"3": ".",
"4": ".",
"5": "7.3",
"6": "13",
"7": "20.6",
"8": "17.4",
"9": ".",
"10": ".",
"11": "19.8",
...
nyc_death_causes.json
{
"columns": [
"age_adjusted_death_rate",
"death_rate",
"deaths",
"leading_cause",
"race_ethnicity",
"sex",
"year"
],
"index": [...],
"data": [
[
"7.6",
import pandas as pd
death_causes = pd.read_json("nyc_death_causes.json", orient="split")
print(death_causes.head())
age_adjusted_death_rate death_rate deaths leading_cause race_ethnicity sex year
0 7.6 6.2 32 Accidents Except Drug... Asian and Pacific Islander F 2007
1 8.1 8.3 87 Accidents Except Drug... Black Non-Hispanic F 2007
2 7.1 6.1 71 Accidents Except Drug... Hispanic F 2007
3 . . . Accidents Except Drug... Not Stated/Unknown F 2007
4 . . . Accidents Except Drug... Other Race/ Ethnicity F 2007
[5 rows x 7 columns]
Streamlined Data Ingestion with pandas