Sentiment Analysis in Python
Violeta Misheva
Data Scientist
from sklearn.linear_model import LogisticRegression
# Regularization arguments
LogisticRegression(penalty='l2', C=1.0)
log_reg = LogisticRegression().fit(X_train, y_train)
# Predict labels
y_predicted = log_reg.predict(X_test)
# Predict probability
y_probab = log_reg.predict_proba(X_test)
y_probab
array([[0.5002245, 0.4997755],
[0.4900345, 0.5099655],
...,
[0.7040499, 0.2959501]])
# Select the probabilities of class 1
y_probab = log_reg.predict_proba(X_test)[:, 1]
array([0.4997755, 0.5099655 ..., 0.2959501]])
# Default probability encoding:
# If probability >= 0.5, then class 1 Else class 0
Sentiment Analysis in Python