Noise

Image Processing in Python

Rebeca Gonzalez

Data Engineer

Noise

Image Processing in Python

Noise

Image Processing in Python

Apply noise in scikit-image

# Import the module and function
from skimage.util import random_noise

# Add noise to the image noisy_image = random_noise(dog_image)
# Show original and resulting image show_image(dog_image) show_image(noisy_image, 'Noisy image')
Image Processing in Python

Apply noise in scikit-image

Image Processing in Python

Reducing noise

Image Processing in Python

Denoising types

  • Total variation (TV)
  • Bilateral
  • Wavelet denoising
  • Non-local means denoising

Image Processing in Python

Denoising

Using total variation filter denoising
from skimage.restoration import denoise_tv_chambolle

# Apply total variation filter denoising denoised_image = denoise_tv_chambolle(noisy_image, weight=0.1, multichannel=True)
# Show denoised image show_image(noisy_image, 'Noisy image') show_image(denoised_image, 'Denoised image')
Image Processing in Python

Denoising

Total variation filter

Image Processing in Python

Denoising

Bilateral filter
from skimage.restoration import denoise_bilateral

# Apply bilateral filter denoising denoised_image = denoise_bilateral(noisy_image, multichannel=True)
# Show original and resulting images show_image(noisy_image, 'Noisy image') show_image(denoised_image, 'Denoised image')
Image Processing in Python

Denoising

Bilateral filter

Image Processing in Python

Let's practice!

Image Processing in Python

Preparing Video For Download...