ARIMA Models in Python
James Fulton
Climate informatics researcher
Time series are everywhere
You will learn
import pandas as pd
import matplotlib as plt
df = pd.read_csv('time_series.csv', index_col='date', parse_dates=True)
date values
2019-03-11 5.734193
2019-03-12 6.288708
2019-03-13 5.205788
2019-03-14 3.176578
fig, ax = plt.subplots()
df.plot(ax=ax)
plt.show()
White noise series has uncorrelated values
Stationary
Not stationary
Stationary
Not stationary
Stationary
Not stationary
# Train data - all data up to the end of 2018
df_train = df.loc[:'2018']
# Test data - all data from 2019 onwards
df_test = df.loc['2019':]
ARIMA Models in Python