ARIMA Models in Python
James Fulton
Climate informatics researcher
time series = trend + seasonal + residual
# Import
from statsmodels.tsa.seasonal import seasonal_decompose
# Decompose data
decomp_results = seasonal_decompose(df['IPG3113N'], period=12)
type(decomp_results)
statsmodels.tsa.seasonal.DecomposeResult
# Plot decomposed data
decomp_results.plot()
plt.show()
# Subtract long rolling average over N steps df = df - df.rolling(N).mean()
# Drop NaN values df = df.dropna()
# Create figure
fig, ax = plt.subplots(1,1, figsize=(8,4))
# Plot ACF
plot_acf(df.dropna(), ax=ax, lags=25, zero=False)
plt.show()
ARIMA Models in Python