Recurrent Neural Networks (RNNs) for Language Modeling with Keras
David Cecchini
Data Scientist
We had bad results with our initial model.
model = Sequential() model.add(SimpleRNN(units=16, input_shape=(None, 1))) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='sgd', metrics=['accuracy'])
model.evaluate(x_test, y_test)
$[0.6991182165145874, 0.495]
To improve the model's performance, we can:
RNN models can overfit
Dropout
layers.dropout
and recurrent_dropout
parameters on RNN layers.# removes 20% of input to add noise model.add(Dropout(rate=0.2))
# Removes 10% of input and memory cells respectively model.add(LSTM(128, dropout=0.1, recurrent_dropout=0.1))
Not in the scope:
model.add(Embedding(vocabulary_size, wordvec_dim, ...))
model.add(Conv1D(num_filters=32, kernel_size=3, padding='same'))
model.add(MaxPooling1D(pool_size=2))
model = Sequential() model.add(Embedding( vocabulary_size, wordvec_dim, trainable=True, embeddings_initializer=Constant(glove_matrix), input_length=max_text_len, name="Embedding"))
model.add(Dense(wordvec_dim, activation='relu', name="Dense1"))
model.add(Dropout(rate=0.25)) model.add(LSTM(64, return_sequences=True, dropout=0.15, name="LSTM"))
model.add(GRU(64, return_sequences=False, dropout=0.15, name="GRU"))
model.add(Dense(64, name="Dense2")) model.add(Dropout(rate=0.25)) model.add(Dense(32, name="Dense3"))
model.add(Dense(1, activation='sigmoid', name="Output"))
Recurrent Neural Networks (RNNs) for Language Modeling with Keras