Multi-class classification models

Recurrent Neural Networks (RNNs) for Language Modeling with Keras

David Cecchini

Data Scientist

Review of the Sentiment classification model

# Build and compile the model
model = Sequential()

model.add(Embedding(10000, 128))
model.add(LSTM(128, dropout=0.2))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
Recurrent Neural Networks (RNNs) for Language Modeling with Keras

Model architecture

Same architecture can be used

# Build the model
model = Sequential()
model.add(Embedding(10000, 128))
model.add(LSTM(128, dropout=0.2))

# Output layer has `num_classes` units and uses `softmax` model.add(Dense(num_classes, activation="softmax"))
# Compile the model model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) ...
Recurrent Neural Networks (RNNs) for Language Modeling with Keras

20 News Group dataset

20 News Groups Dataset

  • Available on sklearn.datasets import fetch_20newsgroups
# Import the function to load the data
from sklearn.datasets import fetch_20newsgroups

# Download train and test sets news_train = fetch_20newsgroups(subset='train')
news_test = fetch_20newsgroups(subset='test')
Recurrent Neural Networks (RNNs) for Language Modeling with Keras

20 News Group dataset

The data has the following attributes:

  • news_train.DESCR: Documentation.
  • news_train.data: Text data.
  • news_train.filenames: Path to the files on disk.
  • news_train.target: Numerical index of the classes.
  • news_train.target_names: Unique names of the classes.
Recurrent Neural Networks (RNNs) for Language Modeling with Keras

Pre-process text data

# Import modules
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.utils import to_categorical

# Create and fit the tokenizer tokenizer = Tokenizer() tokenizer.fit_on_texts(news_train.data)
# Create the (X, Y) variables X_train = tokenizer.texts_to_sequences(news_train.data) X_train = pad_sequences(X_train, maxlen=400) Y_train = to_categorical(news_train.target)
Recurrent Neural Networks (RNNs) for Language Modeling with Keras

Training on data

Train the model on training data

# Train the model
model.fit(X_train, Y_train, 
          batch_size=64, epochs=100)

# Evaluate on test data
model.evaluate(X_test, Y_test)
Recurrent Neural Networks (RNNs) for Language Modeling with Keras

Let's practice!

Recurrent Neural Networks (RNNs) for Language Modeling with Keras

Preparing Video For Download...