Machine Translation with Keras
Thushan Ganegedara
Data Scientist and Author
Data
en_text
: A Python list of sentences, each sentence is a string of words separated by spaces.fr_text
: A Python list of sentences, each sentence is a string of words separated by spaces.Printing some data in the dataset
for en_sent, fr_sent in zip(en_text[:3], fr_text[:3]):
print("English: ", en_sent)
print("\tFrench: ", fr_sent)
English: new jersey is sometimes quiet during autumn , and it is snowy in april .
French: new jersey est parfois calme pendant l' automne , et il est neigeux en avril .
English: the united states is usually chilly during july , and it is usually freezing in november .
French: les états-unis est généralement froid en juillet , et il gèle habituellement en novembre .
...
Tokenization
"I watched a movie last night, it was okay."
becomes,[I, watched, a, movie, last, night, it, was, okay]
Tokenization with Keras
from tensorflow.keras.preprocessing.text import Tokenizer
en_tok = Tokenizer()
en_tok = Tokenizer()
en_tok.fit_on_texts(en_text)
Tokenizer
's word_index
attribute.id = en_tok.word_index["january"] # => returns 51
w = en_tok.index_word[51] # => returns 'january'
seq = en_tok.texts_to_sequences(['she likes grapefruit , peaches , and lemons .'])
[[26, 70, 27, 73, 7, 74]]
Tokenizer
.tok = Tokenizer(num_words=50)
Out-of-vocabulary (OOV) words
E.g.
tok.fit_on_texts(["I drank milk"])
tok.texts_to_sequences(["I drank water"])
water
is a OOV word and will be ignored.tok = Tokenizer(num_words=50, oov_token='UNK')
tok.fit_on_texts(["I drank milk"])
tok.texts_to_sequences(["I drank water"])
water
is a OOV word and will be replaced with UNK
.Machine Translation with Keras