ARIMA Models in R
David Stoffer
Professor of Statistics at the University of Pittsburgh
x <- arima.sim(list(order = c(1, 0, 0), ar = -.7), n = 200)
y <- arima.sim(list(order = c(0, 0, 1), ma = -.7), n = 200)
par(mfrow = c(1, 2))
plot(x, main = "AR(1)")
plot(y, main = "MA(1)")
AR(p) | MA(q) | ARMA(p, q) | |
---|---|---|---|
ACF | Tails off | Cuts off lag q | Tails off |
PACF | Cuts off lag p | Tails off | Tails off |
AR(p) | MA(q) | ARMA(p, q) | |
---|---|---|---|
ACF | Tails off | Cuts off lag q | Tails off |
PACF | Cuts off lag p | Tails off | Tails off |
AR(p) | MA(q) | ARMA(p, q) | |
---|---|---|---|
ACF | Tails off | Cuts off lag q | Tails off |
PACF | Cuts off lag p | Tails off | Tails off |
AR(p) | MA(q) | ARMA(p, q) | |
---|---|---|---|
ACF | Tails off | Cuts off lag q | Tails off |
PACF | Cuts off lag p | Tails off | Tails off |
$$W_t = 50 + 1.5(X_{t-1} - 50) -.75(X_{t-2}- 50) + W_t $$
x <- arima.sim(list(order = c(2, 0, 0),
ar = c(1.5, -.75)),
n = 200) + 50
x_fit <- sarima(x, p = 2, d = 0, q = 0)
x_fit$ttable
Estimate SE t.value p.value
ar1 1.5429 0.0435 35.4417 0
ar2 -0.7752 0.0434 -17.8650 0
xmean 49.6984 0.3057 162.5788 0
$$X_t = W_t - .7W_{t-1}$$
y <- arima.sim(list(order = c(0, 0, 1), ma = -.7), n = 200)
y_fit <- sarima(y, p = 0, d = 0, q = 1)
y_fit$ttable
Estimate SE t.value p.value
ma1 -0.7459 0.0513 -14.5470 0.0000
xmean 0.0324 0.0191 1.6946 0.0917
ARIMA Models in R