Data preparation for purchase prediction

Machine Learning for Marketing in Python

Karolis Urbonas

Head of Analytics & Science, Amazon

Regression - predicting continuous variable

  • Regression - type of supervised learning
  • Target variable - continuous or count variable
  • Simplest version - linear regression
  • Count data (e.g. number of days active) sometimes better predicted by Poisson or Negative Binomial regression
Machine Learning for Marketing in Python

Recency, frequency, monetary (RFM) features

  • RFM - approach that underlies many feature engineering methods
  • Recency - time since last customer transaction
  • Frequency - number of purchases in the observed period
  • Monetary value - total amount spent in the observed period
Machine Learning for Marketing in Python

Explore the sales distribution by month

# Explore monthly distribution of observations
online.groupby(['InvoiceMonth']).size()
InvoiceMonth
2010-12    4893
2011-01    3580
2011-02    3648
2011-03    4764
2011-04    4148
2011-05    5018
2011-06    4669
2011-07    4610
2011-08    4744
2011-09    7189
2011-10    8808
2011-11    9513
dtype: int64
Machine Learning for Marketing in Python

Separate feature data

# Exclude target variable
online_X = online[online['InvoiceMonth']!='2011-11']

# Define snapshot date NOW = dt.datetime(2011,11,1)
# Build the features features = online_X.groupby('CustomerID').agg({ 'InvoiceDate': lambda x: (NOW - x.max()).days, 'InvoiceNo': pd.Series.nunique, 'TotalSum': np.sum, 'Quantity': ['mean', 'sum'] }).reset_index()
features.columns = ['CustomerID', 'recency', 'frequency', 'monetary', 'quantity_avg', 'quantity_total']
Machine Learning for Marketing in Python

Review features

print(features.head())

Features header

Machine Learning for Marketing in Python

Calculate target variable

# Build pivot table with monthly transactions per customer
cust_month_tx = pd.pivot_table(data=online, index=['CustomerID'], 
                               values='InvoiceNo',
                               columns=['InvoiceMonth'],
                               aggfunc=pd.Series.nunique, fill_value=0)
print(cust_month_tx.head())

Customer monthly pivot table

Machine Learning for Marketing in Python

Finalize data preparation and split to train/test

# Store identifier and target variable column names
custid = ['CustomerID']
target = ['2011-11']

# Extract target variable Y = cust_month_tx[target]
# Extract feature column names cols = [col for col in features.columns if col not in custid]
# Store features X = features[cols]
Machine Learning for Marketing in Python

Split data to training and testing

# Randomly split 25% of the data to testing
from sklearn.model_selection import train_test_split
train_X, test_X, train_Y, test_Y = train_test_split(X, Y, 
                                                    test_size=0.25, 
                                                    random_state=99)

# Print shapes of the datasets print(train_X.shape, train_Y.shape, test_X.shape, test_Y.shape)
(2529, 5) (2529, 1) (843, 5) (843, 1)
Machine Learning for Marketing in Python

Let's work on data preparation exercises!

Machine Learning for Marketing in Python

Preparing Video For Download...