Practicing Machine Learning Interview Questions in Python
Lisa Stuart
Data Scientist
Regularization | L1 (Lasso) | L2 (Ridge) |
---|---|---|
penalizes | sum of absolute value of coefficients | sum of squares of coefficients |
solutions | sparse | non-sparse |
number of solutions | multiple | one |
feature selection | yes | no |
robust to outliers? | yes | no |
complex patterns? | no | yes |
Features | CHAS | NOX | RM |
---|---|---|---|
Coefficient estimates | 2.7 | -17.8 | 3.8 |
Regularized coefficient estimates | 0 | 0 | 0.95 |
# Lasso estimator
sklearn.linear_model.Lasso
# Lasso estimator with cross-validation
sklearn.linear_model.LassoCV
# Ridge estimator
sklearn.linear_model.Ridge
# Ridge estimator with cross-validation
sklearn.linear_model.RidgeCV
# ElasticNet estimator
sklearn.linear_model.ElasticNet
# ElasticNet estimator with cross-validation
sklearn.linear_model.ElasticNetCV
# Train/test split
sklearn.model_selection.train_test_split
# Mean squared error
sklearn.metrics.mean_squared_error(y_test,
predict(X_test))
# Best regularization parameter
mod_cv.alpha_
# Array of log values
alphas=np.logspace(-6, 6, 13)
Practicing Machine Learning Interview Questions in Python