Practicing Machine Learning Interview Questions in Python
Lisa Stuart
Data Scientist
Test data:
Monthly Debt
Annual Income/12
Function | returns |
---|---|
sklearn.linear_model.LogisticRegression |
logistic regression |
sklearn.model_selection.train_test_split |
train/test split function |
sns.countplot(x='Loan Status', data=data) |
bar plot |
df.drop(['Feature 1', 'Feature 2'], axis=1) |
drops list of features |
df["Loan Status"].replace({'Paid': 0, 'Not Paid': 1}) |
Loan Status as integers |
pd.get_dummies() |
k - 1 binary features |
sklearn.metrics.accuracy_score(y_test, predict(X_test)) |
model accuracy |
Practicing Machine Learning Interview Questions in Python