Scheduling daily jobs

Introduction to Data Engineering

Vincent Vankrunkelsven

Data Engineer @ DataCamp

What you've done so far

 

  • Extract using extract_course_data() and extract_rating_data()
  • Clean up using NA using transform_fill_programming_language()
  • Average course ratings per course: transform_avg_rating()
  • Get eligible user and course id pairs: transform_courses_to_recommend()
  • Calculate the recommendations: transform_recommendations()
Introduction to Data Engineering

Loading to Postgres

 

  • Use the calculations in data products
  • Update daily
  • Example use case: sending out e-mails with recommendations
Introduction to Data Engineering

The loading phase

 

recommendations.to_sql(
    "recommendations",
    db_engine,
    if_exists="append",
)
Introduction to Data Engineering
def etl(db_engines):
    # Extract the data
    courses = extract_course_data(db_engines)
    rating = extract_rating_data(db_engines)
    # Clean up courses data
    courses = transform_fill_programming_language(courses)

# Get the average course ratings avg_course_rating = transform_avg_rating(rating)
# Get eligible user and course id pairs courses_to_recommend = transform_courses_to_recommend( rating, courses, )
# Calculate the recommendations recommendations = transform_recommendations( avg_course_rating, courses_to_recommend, )
# Load the recommendations into the database load_to_dwh(recommendations, db_engine))
Introduction to Data Engineering

Creating the DAG

from airflow.models import DAG
from airflow.operators.python_operator import PythonOperator

dag = DAG(dag_id="recommendations",
          scheduled_interval="0 0 * * *")

task_recommendations = PythonOperator( task_id="recommendations_task", python_callable=etl, )
Introduction to Data Engineering

Let's practice!

Introduction to Data Engineering

Preparing Video For Download...