Quantitative Risk Management in Python
Jamsheed Shorish
Computational Economist
scipy.stats.norm.fit(), fitting Normal distribution to data
norm.fit()
norm.fit()t.fit()
critical_valuesscipy.stats.andersonloss datafrom scipy.stats import andersonanderson(loss)
AndersonResult(statistic=11.048641503898523,
critical_values=array([0.57 , 0.649, 0.779, 0.909, 1.081]),
significance_level=array([15. , 10. ,  5. ,  2.5,  1. ]))
  

scipy.stats as skewnorm
scipy.stats.skewtestskewtest from scipy.statsloss datafrom scipy.stats import skewtestskewtest(loss)
SkewtestResult(statistic=-7.786120875514511,
pvalue=6.90978472959861e-15)
  Quantitative Risk Management in Python