Quantitative Risk Management in Python
Dr. Jamsheed Shorish
Computational Economist
Pandas data analysis libraryprices.pct_change() method.dot() method of returnsprices = pandas.read_csv("portfolio.csv")returns = prices.pct_change()weights = (weight_1, weight_2, ...)portfolio_returns = returns.dot(weights)
.cov() DataFrame method of returns and annualize
covariance = returns.cov()*252print(covariance)

.cov() DataFrame method of returns and annualizecovariance is individual asset variances
 
covariance = returns.cov()*252print(covariance)

.cov() DataFrame method of returns and annualizecovariance is individual asset variancescovariance are covariances between assetscovariance = returns.cov()*252print(covariance)

weights in portfolio@ operator in Pythonweights = [0.25, 0.25, 0.25, 0.25] # Assumes four assets in portfolioportfolio_variance = np.transpose(weights) @ covariance @ weightsportfolio_volatility = np.sqrt(portfolio_variance)
Series.rolling() creates a windowwindowed = portfolio_returns.rolling(30)volatility = windowed.std()*np.sqrt(252) volatility.plot() .set_ylabel("Standard Deviation...")

Quantitative Risk Management in Python